Test Method Conducted: ASTM E662
Specific Optical Density of Smoke Generated by Solid Material
-Flaming Exposure-

Test Method Performed By:
Interface Testing Laboratory
NVLAP Code: 200402
Graham Scott Technical Center
1603 Executive Dr.
LaGrange, GA 30240
(706) 812-6152
FAX: (706) 884-8669

Date Requested:	04/11/12
Requested By:	J.Humphries
Customer:	InterfaceFLOR
Style Name:	UR103
Style #:	2712
Backing:	GlasBac
Testing Complete:	04/20/12
Report Issued:	04/20/12

Subject: Specimens of the submitted sample were prepared and tested in accordance with the procedures proposed by the National Institute of Standards and Technology (formerly National Bureau of Standards), Technical Note 708 and NFPA 258, ASTM E-662.

Scope: The Smoke Density Chamber test is used to determine the specific optical density of the smoke generated within a closed chamber due to non-flaming pyrolytic decomposition or flaming combustion. A photometric system with a vertical light path is used to measure the varying light transmittance as smoke accumulates. The recorded data for light transmittance is used to calculate the specific optical density of the smoke generated during the test for each of the specimens tested. The results are then averaged and reported as average Specific Optical Density. The photometric scale used to measure the smoke generated in this test is similar to the optical density scale for human vision.

Test Specimen Conditioning: The samples were (per ASTM E 662) pre-dried for 24 h at 140 deg. plus or minus 5 deg. F and then conditioned to equilibrium (constant weight) at an ambient temperature of 73 deg. plus or minus 5 deg F and a relative humidity of 50 % plus or minus 5%. While in conditioning, the specimens were supported by racks so that air had access to all surfaces.

Results/Record Storage: Results listed on this report are abbreviated. DM (corrected) represents the maximum specific optical density minus the specific optical density value of the clear beam reading (corrected factor). This number, when averaged, is the final result. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Avg. DM (corrected) = 170

Interpretation of results: A result of 450 or less is generally considered a passing result although official PASS/FAIL criteria have not been established by ASTM.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402

Toni Brown
Approved Signatory
Test Method Conducted: ASTM E648/NFPA253
Critical Radiant Flux of Floor-Covering Systems
Using a Radiant Energy Heat Source

Subject: Specimens of the submitted sample were prepared and tested in accordance with ASTM E-648 / Federal Test Method 372. NFPA 253.

Scope: This fire-test-response standard measures the critical radiant flux at flame-out. It provides a basis for estimating one aspect of fire exposure behavior for floor-covering systems. The imposed radiant flux simulates the thermal radiation levels likely to impinge on the floors of a building whose upper surfaces are heated by flames or hot gases, or both, from a fully developed fire in an adjacent room or compartment. The standard was developed to simulate an important fire exposure component of fires that develops in corridors or exitways of buildings and is not intended for routine use in estimating flame spread behavior of floor covering in building areas other than corridors or exitways.

Test Specimen Sampling and Conditioning: (Per ASTM E 648/NFPA 253) The test specimen is cut in machine direction to fit the GRC board, and meet the requirements for burn distance of test. Adhesive was applied to the smooth side of the GRC board in accordance with the manufacturer's directions. The carpet samples were laid into the adhesive and rolled with a paint roller with about 20 pounds pressure to assure a good bond, and dead-stacked overnight before conditioning. The samples were conditioned for a minimum of 96 h at 69.8 deg. plus or minus 5.4 deg. F and a relative humidity of 50 % plus or minus 5%. While in conditioning, the specimens were supported by racks so that air had access to all surfaces.

Results/Record Storage: Results listed on this report are abbreviated. The critical radiant flux is the level of incident radiant heat energy on the floor covering system at the most distant flame-out point. In this test, three specimens were tested and the Average Critical Radiant Flux is considered to be the final result. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Avg. Critical Radiant Flux = 0.59 Class I

Interpretation of results: The NFPA Life Safety Code 101 specifies as Class I Critical Radiant Flux of .45 watts/sq cm or higher and Class II Critical Radiant Flux as .22 - .44 watts/sq cm.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402

This report is provided for the exclusive use of the customer to whom it is addressed. Any communication of the contents hereof to others requires our prior written consent. This laboratory is accredited by the NVLAP of the US. Department of Commerce as having the competence to perform specified tests in accordance with the prescribed test methods and accreditation criteria. This report applies only to the standards or procedures identified and to the sample(s) tested. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products. Accreditation or any of its test reports in no way constitutes or implies product certification, approval, or endorsement by NIST or any agency of the US. Government.

Date Requested: 05/17/12
Requested By: J.Humphries
Customer: Interface
Style Name: UR101
Style #: 2711
Backing: GlasBac
Testing Complete: 05/23/12
Report Issued: 05/23/12

Toni Brown
Approved Signatory
Subject: Specimens of the submitted sample were prepared and tested in accordance with the procedures proposed by the National Institute of Standards and Technology (formerly National Bureau of Standards), Technical Note 708 and NFPA 258, ASTM E-662.

Scope: The Smoke Density Chamber test is used to determine the specific optical density of the smoke generated within a closed chamber due to non-flaming pyrolytic decomposition or flaming combustion. A photometric system with a vertical light path is used to measure the varying light transmittance as smoke accumulates. The recorded data for light transmittance is used to calculate the specific optical density of the smoke generated during the test for each of the specimens tested. The results are then averaged and reported as average Specific Optical Density. The photometric scale used to measure the smoke generated in this test is similar to the optical density scale for human vision.

Test Specimen Conditioning: The samples were (per ASTM E 662) pre-dried for 24 h at 140 deg. plus or minus 5 deg. F and then conditioned to equilibrium (constant weight) at an ambient temperature of 73 deg. plus or minus 5 deg F and a relative humidity of 50 % plus or minus 5%. While in conditioning, the specimens were supported by racks so that air had access to all surfaces.

Results/Record Storage: Results listed on this report are abbreviated. DM (corrected) represents the maximum specific optical density minus the specific optical density value of the clear beam reading (corrected factor). This number, when averaged, is the final result. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Avg. DM (corrected) = 263

Interpretation of results: A result of 450 or less is generally considered a passing result although official PASS/FAIL criteria have not been established by ASTM.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402
Test Method Conducted:
"Consumer Product Safety Commission (CPSC) FF 1-70"
"Department of Commerce" (DOC) FF-70
Flammability Test

Test Method Performed By:
Interface Testing Laboratory
NVLAP Code: 200402
Graham Scott Technical Center
1603 Executive Dr.
LaGrange, GA 30240
(706) 812-6152
FAX: (706) 884-8669

Date Requested: 05/17/12
Requested By: J.Humphries
Customer: Interface
Style Name: UR101

Style #: 2711
Backin: GlasBac
Testing Complete: 05/22/12
Report Issued: 05/22/12

Subject: Specimens of the submitted sample were prepared and tested in accordance with the procedures proposed by ASTM D 2859.

Scope: This test method provides a procedure for identification of those finished textile floor covering materials that can be rated as flame-resistant under specific controlled laboratory conditions. The conditioned and oven-dried specimens are exposed to a standard source of ignition in a draft-protected environment and the resulting char length is measured.

Test Specimen Conditioning: The samples were (per ASTM D 2859) vacuumed and then placed in an oven in a manner permitting free circulation of the air at 105 plus or minus 2 degrees Celsius for 2 hours. The specimens are then removed from the oven and placed directly in a dessicator for 1 hour, or until they reach room temperature, whichever is longer.

Results/Record Storage: Results listed on this report are abbreviated. In this test, eight specimens were tested and the seven of eight specimens must pass. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Passed 8 of 8

A single specimen has passed the test if the charred portion of the tested specimen shall not extend to within 1.0 in. (25.4 mm) of the edge of the hole in the steel frame at any point. The mandatory Flammable Fabrics Act Regulations each require that at least seven of the eight individual specimens pass for the carpet or rug to meet acceptance criterion.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402

Toni Brown
Approved Signatory

This report is provided for the exclusive use of the customer to whom it is addressed. Any communication of the contents hereof to others requires our prior written consent. This laboratory is accredited by the NVLAP of the US. Department of Commerce as having the competence to perform specified tests in accordance with the prescribed test methods and accreditation criteria. This report applies only to the standards or procedures identified and to the sample(s) tested. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products. Accreditation or any of its test reports in no way constitutes or implies product certification, approval, or endorsement by NIST or any agency of the US. Government.
Test Method Conducted:
"Consumer Product Safety Commission (CPSC) FF 1-70"
"Department of Commerce" (DOC) FF-70
Flammability Test

Test Method Performed By:
Interface Testing Laboratory
NVLAP Code: 200402
Graham Scott Technical Center
1603 Executive Dr.
LaGrange, GA 30240
(706) 812-6152
FAX: (706) 884-8669

Date Requested: 05/17/12
Requested By: J.Humphries
Customer: Interface
Style Name: UR102
Style #: 2710
Backing: GlasBac
Testing Complete: 05/22/12
Report Issued: 05/22/12

Subject: Specimens of the submitted sample were prepared and tested in accordance with the procedures proposed by ASTM D 2859.

Scope: This test method provides a procedure for identification of those finished textile floor covering materials that can be rated as flame-resistant under specific controlled laboratory conditions. The conditioned and oven-dried specimens are exposed to a standard source of ignition in a draft-protected environment and the resulting char length is measured.

Test Specimen Conditioning: The samples were (per ASTM D 2859) vacuumed and then placed in an oven in a manner permitting free circulation of the air at 105 plus or minus 2 degrees Celsius for 2 hours. The specimens are then removed from the oven and placed directly in a dessicator for 1 hour, or until they reach room temperature, whichever is longer.

Results/Record Storage: Results listed on this report are abbreviated. In this test, eight specimens were tested and the seven of eight specimens must pass. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Passed 8 of 8

A single specimen has passed the test if the charred portion of the tested specimen shall not extend to within 1.0 in. (25.4 mm) of the edge of the hole in the steel frame at any point. The mandatory Flammable Fabrics Act Regulations each require that at least seven of the eight individual specimens pass for the carpet or rug to meet acceptance criterion.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402

Toni Brown
Approved Signatory

This report is provided for the exclusive use of the customer to whom it is addressed. Any communication of the contents hereof to others requires our prior written consent. This laboratory is accredited by the NVLAP of the US. Department of Commerce as having the competence to perform specified tests in accordance with the prescribed test methods and accreditation criteria. This report applies only to the standards or procedures identified and to the sample(s) tested. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products. Accreditation or any of its test reports in no way constitutes or implies product certification, approval, or endorsement by NIST or any agency of the US. Government.
Test Method Conducted: ASTM E648/NFPA253
Critical Radiant Flux of Floor-Covering Systems
Using a Radiant Energy Heat Source

Test Method Performed By:
Interface Testing Laboratory
NVLAP Code: 200402
Graham Scott Technical Center
1603 Executive Dr.
LaGrange, GA 30240
(706) 812-6152
FAX: (706) 884-8669

Subject: Specimens of the submitted sample were prepared and tested in accordance with ASTM E-648 / Federal Test Method 372.
NFPA 253.

Scope: This fire-test-response standard measures the critical radiant flux at flame-out. It provides a basis for estimating one aspect of fire exposure behavior for floor-covering systems. The imposed radiant flux simulates the thermal radiation levels likely to impinge on the floors of a building whose upper surfaces are heated by flames or hot gases, or both, from a fully developed fire in an adjacent room or compartment. The standard was developed to simulate an important fire exposure component of fires that develops in corridors or exitways of buildings and is not intended for routine use in estimating flame spread behavior of floor covering in building areas other than corridors or exitways.

Test Specimen Sampling and Conditioning: (Per ASTM E 648/NFPA 253) The test specimen is cut in machine direction to fit the GRC board, and meet the requirements for burn distance of test. Adhesive was applied to the smooth side of the GRC board in accordance with the manufacturer’s directions. The carpet samples were laid into the adhesive and rolled with a paint roller with about 20 pounds pressure to assure a good bond, and dead-stacked overnight before conditioning. The samples were conditioned for a minimum of 96 h at 69.8 deg. plus or minus 5.4 deg. F and a relative humidity of 50 % plus or minus 5%. While in conditioning, the specimens were supported by racks so that air had access to all surfaces.

Results/Record Storage: Results listed on this report are abbreviated. The critical radiant flux is the level of incident radiant heat energy on the floor covering system at the most distant flame-out point. In this test, three specimens were tested and the Average Critical Radiant Flux is considered to be the final result. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Avg. Critical Radiant Flux = 0.65 Class I

Interpretation of results: The NFPA Life Safety Code 101 specifies as Class I Critical Radiant Flux of .45 watts/sq cm or higher and Class II Critical Radiant Flux as .22 - .44 watts/sq cm.

Toni Brown
Approved Signatory

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402

This report is provided for the exclusive use of the customer to whom it is addressed. Any communication of the contents hereof to others requires our prior written consent. This laboratory is accredited by the NVLAP of the US. Department of Commerce as having the competence to perform specified tests in accordance with the prescribed test methods and accreditation criteria. This report applies only to the standards or procedures identified and to the sample(s) tested. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products. Accreditation or any of its test reports in no way constitutes or implies product certification, approval, or endorsement by NIST or any agency of the US. Government.
Test Method Conducted: ASTM E662
Specific Optical Density of Smoke Generated by Solid Material
-Flaming Exposure-

Test Method Performed By:
Interface Testing Laboratory
NVLAP Code: 200402
Graham Scott Technical Center
1603 Executive Dr.
LaGrange, GA 30240
(706) 812-6152
FAX: (706) 884-8669

Subject: Specimens of the submitted sample were prepared and tested in accordance with the procedures proposed by the National Institute of Standards and Technology (formerly National Bureau of Standards), Technical Note 708 and NFPA 258, ASTM E-662.

Scope: The Smoke Density Chamber test is used to determine the specific optical density of the smoke generated within a closed chamber due to non-flaming pyrolytic decomposition or flaming combustion. A photometric system with a vertical light path is used to measure the varying light transmittance as smoke accumulates. The recorded data for light transmittance is used to calculate the specific optical density of the smoke generated during the test for each of the specimens tested. The results are then averaged and reported as average Specific Optical Density. The photometric scale used to measure the smoke generated in this test is similar to the optical density scale for human vision.

Test Specimen Conditioning: The samples were (per ASTM E 662) pre-dried for 24 h at 140 deg. plus or minus 5 deg. F and then conditioned to equilibrium (constant weight) at an ambient temperature of 73 deg. plus or minus 5 deg F and a relative humidity of 50 % plus or minus 5%. While in conditioning, the specimens were supported by racks so that air had access to all surfaces.

Results/Record Storage: Results listed on this report are abbreviated. DM (corrected) represents the maximum specific optical density minus the specific optical density value of the clear beam reading (corrected factor). This number, when averaged, is the final result. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Avg. DM (corrected) = 205

Interpretation of results: A result of 450 or less is generally considered a passing result although official PASS/FAIL criteria have not been established by ASTM.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402

This report is provided for the exclusive use of the customer to whom it is addressed. Any communication of the contents hereof to others requires our prior written consent. This laboratory is accredited by the NVLAP of the US. Department of Commerce as having the competence to perform specified tests in accordance with the prescribed test methods and accreditation criteria. This report applies only to the standards or procedures identified and to the sample(s) tested. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products. Accreditation or any of its test reports in no way constitutes or implies product certification, approval, or endorsement by NIST or any agency of the US. Government.

Toni Brown
Approved Signatory
Test Method Conducted:
"Consumer Product Safety Commission (CPSC) FF 1-70"
"Department of Commerce" (DOC) FF-70
Flammability Test

Test Method Performed By:
Interface Testing Laboratory
NVLAP Code: 200402
Graham Scott Technical Center
1603 Executive Dr.
LaGrange, GA 30240
(706) 812-6152
FAX: (706) 884-8669

Date Requested: 04/11/12
Requested By: J.Humphries
Customer: InterfaceFLOR
Style Name: UR103
Style #: 2712
Backing: GlasBac
Testing Complete: 04/17/12
Report Issued: 04/17/12

Subject: Specimens of the submitted sample were prepared and tested in accordance with the procedures proposed by ASTM D 2859.

Scope: This test method provides a procedure for identification of those finished textile floor covering materials that can be rated as flame-resistant under specific controlled laboratory conditions. The conditioned and oven-dried specimens are exposed to a standard source of ignition in a draft-protected environment and the resulting char length is measured.

Test Specimen Conditioning: The samples were (per ASTM D 2859 vacuumed and then placed in an oven in a manner permitting free circulation of the air at 105 plus or minus 2 degrees Celsius for 2 hours. The specimens are then removed from the oven and placed directly in a dessicator for 1 hour, or until they reach room temperature, whichever is longer.

Results/Record Storage: Results listed on this report are abbreviated. In this test, eight specimens were tested and the seven of eight specimens must pass. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Passed 8 of 8

A single specimen has passed the test if the charred portion of the tested specimen shall not extend within 1.0 in. (25.4 mm) of the edge of the hole in the steel frame at any point. The mandatory Flammable Fabrics Act Regulations each require that at least seven of the eight individual specimens pass for the carpet or rug to meet acceptance criterion.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402

Toni Brown
Approved Signatory

This report is provided for the exclusive use of the customer to whom it is addressed. Any communication of the contents hereof to others requires our prior written consent. This laboratory is accredited by the NVLAP of the US. Department of Commerce as having the competence to perform specified tests in accordance with the prescribed test methods and accreditation criteria. This report applies only to the standards or procedures identified and to the sample(s) tested. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products. Accreditation or any of its test reports in no way constitutes or implies product certification, approval, or endorsement by NIST or any agency of the US. Government.
Subject: Specimens of the submitted sample were prepared and tested in accordance with ASTM E-648 / Federal Test Method 372. NFPA 253.

Scope: This fire-test-response standard measures the critical radiant flux at flame-out. It provides a basis for estimating one aspect of fire exposure behavior for floor-covering systems. The imposed radiant flux simulates the thermal radiation levels likely to impinge on the floors of a building whose upper surfaces are heated by flames or hot gases, or both, from a fully developed fire in an adjacent room or compartment. The standard was developed to simulate an important fire exposure component of fires that develops in corridors or exitways of buildings and is not intended for routine use in estimating flame spread behavior of floor covering in building areas other than corridors or exitways.

Test Specimen Sampling and Conditioning: (Per ASTM E 648/NFPA 253) The test specimen is cut in machine direction to fit the GRC board, and meet the requirements for burn distance of test. Adhesive was applied to the smooth side of the GRC board in accordance with the manufacturer's directions. The carpet samples were laid into the adhesive and rolled with a paint roller with about 20 pounds pressure to assure a good bond, and dead-stacked overnight before conditioning. The samples were conditioned for a minimum of 96 h at 69.8 deg. plus or minus 5.4 deg. F and a relative humidity of 50 % plus or minus 5%. While in conditioning, the specimens were supported by racks so that air had access to all surfaces.

Results/Record Storage: Results listed on this report are abbreviated. The critical radiant flux is the level of incident radiant heat energy on the floor covering system at the most distant flame-out point. In this test, three specimens were tested and the Average Critical Radiant Flux is considered to be the final result. All raw data pertaining to this study are to be retained in designated Interface Testing Laboratory Files. A copy of the raw data, tables, graphs, or tabulations which support this report can be obtained upon request.

Final Result: Avg. Critical Radiant Flux = .60 Class I

Interpretation of results: The NFPA Life Safety Code 101 specifies as Class I Critical Radiant Flux of .45 watts/sq cm or higher and Class II Critical Radiant Flux as .22 - .44 watts/sq cm.

Accredited by the National Voluntary Accreditation Program (NVLAP) for the specific scope of Accreditation under NVLAP Lab Code #200402